高強度鉄筋を用いた杭頭結合構造の 正負交番水平載荷実験

道路·鉄道技術委員会

1. 緒言

道路橋における杭基礎およびその周辺 技術の高機能化をはかるため、鋼管杭 協会では、土木研究所らとともに共同研 究を進めており、その中の重要課題とし て、鋼管ソイルセメント杭工法¹⁾ や回転 杭¹⁾等の大支持力鋼管杭実用化に伴う 杭頭反力増大に対応するための新しい杭 頭接合構造の開発が急務となっている。

fff

従来の道路橋基礎における鋼管杭と フーチングの結合方法としては、フーチ ングの中に杭を一定長さL(L≥D、D: 杭径)だけ埋込み、杭頭反力(鉛直 力、水平力、曲げモーメント)に抵抗す る方法(方法A)、およびフーチング内の 杭の埋込みは最小限度(100mm)に留 め、主として中詰め補強鉄筋で補強する ことにより杭頭反力に抵抗する方法(方 法B)の2つの方法が道路橋示方書²⁾に 規定されている。ただし、実施工におい てはフーチング内配筋の施工性確保など の理由から、ほぼ全てのケースで(方法 B)が採用される傾向にある³⁾。

その一方で、前述の大支持力鋼管杭 に対しては、結合方法Bの中詰め補強鉄 筋だけでは十分な杭頭部耐力が確保でき ないことから、現状では補強鉄筋を鋼管 杭外周にも現場溶接(フーチングへの埋 込み部10cm範囲のフレア溶接)して杭 頭部耐力を高める方法(図1)が広く用 いられている。しかし、本杭頭結合構造 では、現場溶接における施工条件管理 や品質確認を確実に行うことは困難であ り、必ずしも十分な品質保証がなされて いないのが実情である。

この問題への対処として、杭頭結合

図1 現状の鋼管杭頭結合構造(中詰め+杭外周溶接鉄筋)

部に用いる中詰め補強鉄筋の材質(強度)を現状最大のSD345(降伏点345N/mm²以上)からSD490(降伏点490N/mm²以上)に高強度化することにより、構造性能とコスト性を維持しつつ、現場溶接レス化する方法(図2)を提案している。本稿では、提案構造の構造性能を確認し、設計法確立に資することを目的として実施した実験結果を報告する。

2. 正負交番水平載荷実験

2.1 実験の目的

本実験では、(1)「主鉄筋(中詰め 補強鉄筋)の高強度化した場合の杭 頭結合部の構造性能評価」に加えて、 (2)「杭頭部結合部耐力設計で用い る仮想RC径の合理的な評価手法の確 立」に資することを目的とした。具体的な 確認項目は以下のとおりである。

- (1)「中詰め補強鉄筋の高強度化」による 杭頭結合部の構造性能評価項目
- 「中詰め補強鉄筋の高強度化」による杭頭結合部の水平耐力確認
- (2)「中詰め補強鉄筋の高強度化」による杭頭結合部の変形性能確認

③高強度鉄筋を用いた場合のコンクリート付

図2 高強度鉄筋を用いた杭頭構造(溶接レス)

着切れによる鉄筋の抜出し有無の確認 ④高強度化補強鉄筋の必要定着長の 確認

(2) 杭頭部結合部耐力設計で用いる仮 想RC径の合理的な評価手法の確立

杭頭結合を方法Bとする場合は、杭 頭結合部が杭頭部より先行して損傷しな いよう、フーチング内に鉄筋コンクリート断 面を仮定した断面(図3参照、以下、 仮想RC断面という)におけるコンクリー トおよび鉄筋の応力度の照査が必要であ り、杭基礎設計便覧¹¹では仮想RC断 面の直径は、杭径(鋼管ソイルセメント 杭では、鋼管径)に200mmを加えた径 として評価することとなっている。

図3 仮想RC断面(杭頭結合方法B)

表1 正負交番水平載荷実験供試体・各供試体の鉄筋定着長

No.	鋼管杭			中詰め補強鉄筋			フーチング		定着長	鉄筋定着長(mm²)	
	径 (mm)	板厚 (mm)	フーチング への埋込長	種類	径 (mm)	本数 (主筋量)	Fc (N/mm²)	備考	算定式Lo (N/mm²)	フーチング側	杭側
1	800	24		SD295	16	24 (0.95%)	30	(従来鉄筋強度)	400	831 (52d相当)	560(35d相当)
2	800			SD490				No1と同一鉄筋量	544*	831 (52d相当)	560(35d相当)
3	800	25	100mm	SD490	29	30(4.4%)		ずれ止め t12×2段	1170**	1460(=Lo+10d,50d相当)	同左(50d相当)
4	1000					28(2.5%)		ずれ止め t12×2段		1460(=Lo+10d,50d相当)	同左(50d相当)
5	800					30(4.4%)		ずれ止め t16×2段		1460(=Lo+10d,50d相当)	同左(50d相当)

※定着長算定のための鉄筋許容応力度を245N/mm²として道示¹¹算定式より算出 ※※定着長算定のための鉄筋許容応力度を295N/mm²として道示¹¹算定式より算出

写真1 載荷状況(No.3供試体)

ただし、これは実物においては小径 域となる杭径600mm以下の供試体によ る載荷試験結果^{4),5),6)}に基づいて設定 されたものであることから、今回の実験 では、仮想RC断面径の評価法をより 合理的なものとする目的から杭径800~ 1000mmの供試体を用いることとした。

2.2 実験条件

表1に実験ケースならびに結合部に用 いる鉄筋サイズ、材質、本数、鉄筋定 着長などの条件を示す。供試体は外径 800~1000mmの鋼管杭の杭頭結合部 (いずれも方法B)を模したもので、中詰 め補強鉄筋の材質はNo.1のみSD295で その他のケースはSD490となっている。 No.1とNo.2の鉄筋径および本数は同一と した。また、No.1、2に比べてNo.3~5 では杭側の定着長を長めの設定とした。 ズレ止め厚さについては、No.1~4では 道路橋示方書の構造細目に従って設定 (ズレ止め厚さ12mm)する一方、No.5 供試体ではワンサイズ厚いズレ止め厚さ (16mm)とした。

載荷は写真1および図4に示す装置に より繰り返し水平荷重を静的に正負交番 載荷する方法で行った。

載荷基準変位1δyの設定については、 鉄筋およびコンクリートの材料試験結果を 用いた仮想RC柱において、杭が降伏す

図4 正負交番水平載荷実験装置(No.4試験体)

る時の水平荷重Pyを計算で求め、その Pyを載荷させた時の変位を1δyとした。

2.3 実験結果

水平荷重と変位の関係を図5~図9に 示す。

(1)水平荷重と変位の関係

杭体内への鉄筋定着長がやや短い No.1、No.2では、いずれも3 δ y載荷後 に一旦荷重が低下しているのに対し、杭 体内への鉄筋定着長を長く(L0+10d) したNo.3 ~ No.5では、8 δ y載荷に至る まで荷重が増加し続けた。

なお、SD490 鉄筋を用いたNo.2 供試 体とSD295 鉄筋を用いたNo.1 供試体と を比較すると、降伏強度の比は1.52(= 414kN / 273kN) であり、SD490 鉄筋 を用いたNo.2 供試体が大きく上回った。

また、No.3とNo.5はずれ止めのサイズ を変更した供試体であるが、水平荷重と 変位の関係において相違はなかった。 (2)変形性能

いずれのケースでも10*δ*y(実験降伏 荷重時の変位で補正)程度に至るまで 降伏荷重を上回る荷重を保ち続けてお り、SD490鉄筋を用いた場合でも杭頭結 合構造の変形性能に問題ないことが確認 できた。

(3)鉄筋の定着状況

No.2供試体およびNo.4供試体の載荷

図5 水平荷重と変位の関係(No.1、SD295)

図6 水平荷重と変位の関係(No.2、SD490)

図7 荷重と水平変位の関係(No.3、SD490)

図8 荷重と水平変位の関係(No.4、SD490)

実験後の鉄筋の状況を写真2、写真3 に示す。杭側の鉄筋定着長が比較的短 いNo.2供試体(杭側定着長35d 相当、 d:鉄筋径)では、鋼管内の鉄筋端部 で30~60mmの大きな抜け出しが発生 していた。なお、フーチング内(定着長 52d相当)では鉄筋抜け出しは認められ なかった。

一方、杭側の鉄筋定着長が長いNo.4 供試体(定着長Lo+10d=50d 相当、d: 鉄筋径)では、杭側、フーチング側とも に鉄筋抜け出しは認められなかった。

(4)仮想RC断面径の評価

実験における杭頭降伏荷重(杭頭鉄 筋が降伏応力度に達するときの水平荷 重)に対して、計算による仮想RC断面の 降伏耐力値と一致するように逆算した(仮 想RC径-杭径)の値について、杭径との 対比として整理したものを図10に示す。同 図中には、既往の実験結果^{4).5).6)}を同様 に整理したデータも記載した。

降伏荷重時では杭径に比例して(仮 想RC径-杭径)の値も大きく評価で きることが実験により確認できた。杭径 ϕ 800mm時において(仮想RC径-杭 径)の値は300~340mm程度、杭径 ϕ 1000mm時において(仮想RC径-杭 径)の値は390mm程度であり、杭基礎 設計便覧¹¹で設定されている200mmを 上回る結果となった。

実験における最大荷重に対して、計算 による仮想RC断面の終局耐力値と一致 するように逆算した(仮想RC径-杭径) の値について、杭径との対比として整理 したものを図11に示す。

最大荷重時においても、杭径に応じ て(仮想RC径-杭径)の値も大きくなる 傾向にあるが、バラツキが大きく、降伏 荷重時の(仮想RC径-杭径)の値に 比べてやや下回る傾向である。No.1は a=263mm、No.2はa=166mm、No.3 = No.5では $a=270 \sim 325$ mmとなった。 No.2の供試体においては前述したように 鋼管杭側の鉄筋定着長不足により鉄筋 が抜け出したことにより、他のケースに比 べて大きく低下したものと考えられる。

3. まとめ

高強度鉄筋の適用性について正負交

写真2 実験後の鉄筋の状況(No.2供試体、杭側定着長35d=Lo)

写真3 実験後の鉄筋の状況(No.3供試体、杭側定着長50d=Lo+10d)

番載荷試験により 以下のこと確認でき た。 (1) 道路橋示方書

(1) 道路儒示方書 における杭頭結合 方法Bにおいて、 中詰め補強鉄筋の 強度をSD490に高 めることにより結合 部強度が確実に向

上するとともに、繰り返し載荷に対し十分 な変形性能も保持していることが確認でき た。

(2) SD490高強度鉄筋を用いた場合、 杭側の鉄筋定着長がLo+10d (d:鉄筋 径、Lo:現行設計法における定着長) であれば、鉄筋抜け出しによる破壊は生 じないことが確認できた。

(3) 杭頭結合部の仮想RC断面径の評価 について、杭径の拡大とともに「仮想RC 径-杭径」の値も大きくなる傾向にあり、杭 径 Ø 800mm 以上の場合、現行の設定値 200mmを上回ることが確認できた。

なお、今回の実験に引続き、軸力変 動の影響を考慮できる2本の杭による組 杭載荷試験を実施しており、現在評価中 である。

500 Y=0.0601*X+256.9 (一次式ファッティング) à 娂300 斑 \diamond ご 影 200 ☆文献 4) 6 ▲文献 5) ×文献 6) ੇ ਵੇ 100 杭側の鉄筋定着長が他の 、短い SD295 フィッティングから除外) š SD490 0 200 400 600 800 1000 1200 鋼管杭径(mm)

図11 杭径と仮想RC柱径との関係(最大荷重時)

<参考文献>

- 1)(社)日本道路協会:杭基礎設計便覧、平成19年1月
- 2)(社)日本道路協会:道路橋示方書·同解説Ⅳ下部
- 構造編、2002
 3)(独)土木研究所:橋梁基礎形式の選定手法調査,
 土木研究所資料、第4037号、2007
- 4)建設省土木研究所:杭頭部とフーチングの結合部の設計法に関する検討、土木研究所資料、第3077号、1992
- 5)建設省建築研究所: 杭頭接合部の力学的挙動に 関する研究、建築研究報告、No.129、1990
- 6)小林ら: くい頭結合部の耐荷特性に及ぼす埋込み 型補強筋のかご径の影響、土木学会第42回年次 学術講演会、1987.9